3.2.69 \(\int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x)) \, dx\) [169]

3.2.69.1 Optimal result
3.2.69.2 Mathematica [A] (verified)
3.2.69.3 Rubi [A] (verified)
3.2.69.4 Maple [B] (verified)
3.2.69.5 Fricas [A] (verification not implemented)
3.2.69.6 Sympy [F(-1)]
3.2.69.7 Maxima [F(-1)]
3.2.69.8 Giac [F]
3.2.69.9 Mupad [F(-1)]

3.2.69.1 Optimal result

Integrand size = 35, antiderivative size = 151 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a^{3/2} (7 A+8 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a^2 (5 A-8 C) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}-\frac {a (A-4 C) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d}+\frac {A \cos (c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d} \]

output
1/4*a^(3/2)*(7*A+8*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+ 
1/2*A*cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d+1/4*a^2*(5*A-8*C)*sin 
(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)-1/2*a*(A-4*C)*sin(d*x+c)*(a+a*sec(d*x+c)) 
^(1/2)/d
 
3.2.69.2 Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.72 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sec (c+d x))} \left (\sqrt {2} (7 A+8 C) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}+2 (A+8 C+7 A \cos (c+d x)+A \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \]

input
Integrate[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2) 
,x]
 
output
(a*Sec[(c + d*x)/2]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[2]*(7*A + 8*C)*ArcSin 
[Sqrt[2]*Sin[(c + d*x)/2]]*Sqrt[Cos[c + d*x]] + 2*(A + 8*C + 7*A*Cos[c + d 
*x] + A*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(8*d)
 
3.2.69.3 Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.01, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.314, Rules used = {3042, 4575, 27, 3042, 4506, 27, 3042, 4503, 3042, 4261, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(c+d x) (a \sec (c+d x)+a)^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \frac {\int \frac {1}{2} \cos (c+d x) (\sec (c+d x) a+a)^{3/2} (3 a A-a (A-4 C) \sec (c+d x))dx}{2 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \cos (c+d x) (\sec (c+d x) a+a)^{3/2} (3 a A-a (A-4 C) \sec (c+d x))dx}{4 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a A-a (A-4 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{4 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {2 \int \frac {1}{2} \cos (c+d x) \sqrt {\sec (c+d x) a+a} \left ((5 A-8 C) a^2+(A+8 C) \sec (c+d x) a^2\right )dx-\frac {2 a^2 (A-4 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \cos (c+d x) \sqrt {\sec (c+d x) a+a} \left ((5 A-8 C) a^2+(A+8 C) \sec (c+d x) a^2\right )dx-\frac {2 a^2 (A-4 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left ((5 A-8 C) a^2+(A+8 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a^2 (A-4 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {\frac {1}{2} a^2 (7 A+8 C) \int \sqrt {\sec (c+d x) a+a}dx+\frac {a^3 (5 A-8 C) \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {2 a^2 (A-4 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{2} a^2 (7 A+8 C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^3 (5 A-8 C) \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {2 a^2 (A-4 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {-\frac {a^3 (7 A+8 C) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {a^3 (5 A-8 C) \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {2 a^2 (A-4 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {a^{5/2} (7 A+8 C) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a^3 (5 A-8 C) \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {2 a^2 (A-4 C) \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}}{4 a}+\frac {A \sin (c+d x) \cos (c+d x) (a \sec (c+d x)+a)^{3/2}}{2 d}\)

input
Int[Cos[c + d*x]^2*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x]
 
output
(A*Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(2*d) + ((a^(5/2) 
*(7*A + 8*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + 
(a^3*(5*A - 8*C)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]) - (2*a^2*(A - 
4*C)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d)/(4*a)
 

3.2.69.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 
3.2.69.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(326\) vs. \(2(131)=262\).

Time = 0.56 (sec) , antiderivative size = 327, normalized size of antiderivative = 2.17

method result size
default \(\frac {a \left (7 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+2 A \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )+8 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+7 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+7 A \cos \left (d x +c \right ) \sin \left (d x +c \right )+8 C \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+8 C \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 d \left (\cos \left (d x +c \right )+1\right )}\) \(327\)

input
int(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x,method=_RETUR 
NVERBOSE)
 
output
1/4*a/d*(7*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d* 
x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+2*A*cos(d*x+c)^2*si 
n(d*x+c)+8*C*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d* 
x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+7*A*(-cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2))+7*A*cos(d*x+c)*sin(d*x+c)+8*C*(-cos(d*x+c)/(cos(d*x+c)+1)) 
^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2 
))+8*C*sin(d*x+c))*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)
 
3.2.69.5 Fricas [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 318, normalized size of antiderivative = 2.11 \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\left [\frac {{\left ({\left (7 \, A + 8 \, C\right )} a \cos \left (d x + c\right ) + {\left (7 \, A + 8 \, C\right )} a\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (2 \, A a \cos \left (d x + c\right )^{2} + 7 \, A a \cos \left (d x + c\right ) + 8 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {{\left ({\left (7 \, A + 8 \, C\right )} a \cos \left (d x + c\right ) + {\left (7 \, A + 8 \, C\right )} a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (2 \, A a \cos \left (d x + c\right )^{2} + 7 \, A a \cos \left (d x + c\right ) + 8 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \]

input
integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algori 
thm="fricas")
 
output
[1/8*(((7*A + 8*C)*a*cos(d*x + c) + (7*A + 8*C)*a)*sqrt(-a)*log((2*a*cos(d 
*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c 
)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(2*A*a*cos(d* 
x + c)^2 + 7*A*a*cos(d*x + c) + 8*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
 c))*sin(d*x + c))/(d*cos(d*x + c) + d), -1/4*(((7*A + 8*C)*a*cos(d*x + c) 
 + (7*A + 8*C)*a)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*c 
os(d*x + c)/(sqrt(a)*sin(d*x + c))) - (2*A*a*cos(d*x + c)^2 + 7*A*a*cos(d* 
x + c) + 8*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*c 
os(d*x + c) + d)]
 
3.2.69.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**2*(a+a*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2),x)
 
output
Timed out
 
3.2.69.7 Maxima [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algori 
thm="maxima")
 
output
Timed out
 
3.2.69.8 Giac [F]

\[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{2} \,d x } \]

input
integrate(cos(d*x+c)^2*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, algori 
thm="giac")
 
output
sage0*x
 
3.2.69.9 Mupad [F(-1)]

Timed out. \[ \int \cos ^2(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^2\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

input
int(cos(c + d*x)^2*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2),x)
 
output
int(cos(c + d*x)^2*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2), x)